MARKSCHEME

November 2011

MATHEMATICS DISCRETE MATHEMATICS

Higher Level

Paper 3

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of IB Cardiff.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
$\boldsymbol{A} \quad$ Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
$\boldsymbol{A} \boldsymbol{G}$ Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Write the marks in red on candidates' scripts, in the right hand margin.

- Show the breakdown of individual marks awarded using the abbreviations M1, A1, etc.
- Write down the total for each question (at the end of the question) and circle it.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M 0}$ followed by $\boldsymbol{A 1}$, as $\boldsymbol{A} \operatorname{mark}(\mathrm{s})$ depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means M1 for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A l}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

$3 \quad N$ marks

Award \boldsymbol{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5
 Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer $\boldsymbol{F T}$ marks.
- If the error leads to an inappropriate value $(e . g \cdot \sin \theta=1.5)$, do not award the $\operatorname{mark}(\mathrm{s})$ for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). Apply a MR penalty of 1 mark to that question. Award the marks as usual and then write $-1(\mathbf{M R})$ next to the total. Subtract 1 mark from the total for the question. A candidate should be penalized only once for a particular mis-read.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $M R$ leads to an inappropriate value $(e . g \cdot \sin \theta=1.5)$, do not award the mark(s) for the final answer(s).

$7 \quad$ Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. The mark should be labelled (d) and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3))
$$

Award $A 1$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for $\boldsymbol{F T}$.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (e.g. TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. (a)

Note: Award $\boldsymbol{A 1}$ if one line missing or one line misplaced. Weights are not required.
(b)

$1 / C_{E}^{A}$
(3)

A7

Note: Award $\boldsymbol{A 1}$ for each edge added in the correct order. First two steps can be interchanged.
2. (a) $752=2(352)+48$
$352=7(48)+16$
$48=3(16)$
therefore $\operatorname{gcd}(752,352)$ is 16
R1
[4 marks]
(b) (i) let x be the number of cows of breed A let y be the number of cows of breed B

$$
752 x+352 y=8128
$$

(ii) $16 \mid 8128$ means there is a solution
$16=352-7$ (48)
(M1)(A1)
$16=352-7(752-2(352))$
$16=15(352)-7(752)$
$8128=7620(352)-3556(752)$
$\Rightarrow x_{0}=-3556, y_{0}=7620$
$\Rightarrow x=-3556+\left(\frac{352}{16}\right) t=-3556+22 t$
$\Rightarrow y=7620-\left(\frac{752}{16}\right) t=7620-47 t$
M1A1A1
(iii) for x, y to be ≥ 0, the only solution is $t=162$
$\Rightarrow x=8, y=6$
3. (a) (i) When we sum over the degrees of all vertices, we count each edge twice. Hence every edge adds two to the sum. Hence the sum of the degrees of all the vertices is even.

R2
(ii) divide the vertices into two sets, those with even degree and those with odd degree

M1
let S be the sum of the degrees of the first set and let T be the sum of the degrees of the second set
we know $S+T$ must be even
since S is the sum of even numbers, then it is even $\boldsymbol{R} \mathbf{1}$
hence T must be even
R1
hence there must be an even number of vertices of odd degree

Question 3 continued

(b) (i)

A1
(ii) the graph M is not Eulerian because vertices D and F are of odd degree
(iii) the edge which must be added is DF
(iv)

a possible Eulerian circuit is ABDFBCDEFGCA
Note: award $A 1$ for a correct Eulerian circuit not starting and finishing at A.
(v) a Hamiltonian cycle is one that contains each vertex in N
with the exception of the starting and ending vertices, each vertex must only appear once
a possible Hamiltonian cycle is ACGFEDBA
(vi)

$$
\left(\begin{array}{lllllll}
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0
\end{array}\right)
$$

(vii) using adjacency matrix to power 4

C and F

4. METHOD 1

let x be the number of cars
we know $x \equiv 0(\bmod 3)$
also $x \equiv 4(\bmod 5)$
so $x=3 t \Rightarrow 3 t \equiv 4(\bmod 5)$
$\Rightarrow 6 t \equiv 8(\bmod 5)$
$\Rightarrow t \equiv 3(\bmod 5)$
$\Rightarrow t=3+5 s$
$\Rightarrow x=9+15 s$
since there must be fewer than 50 cars, $x=9,24,39$
Note: Only award two of the final three $\boldsymbol{A 1}$ marks if more than three solutions are given.

METHOD 2

x is a multiple of 3 that ends in 4 or $9 \quad$ R4
therefore $x=9,24,39$ A1A1A1
Note: Only award two of the final three $\boldsymbol{A 1}$ marks if more than three solutions are given.
5. (a) consider two cases
let a and p be coprime
$a^{p-1} \equiv 1(\bmod p)$
$\Rightarrow a^{p}=a(\bmod p)$
let a and p not be coprime
$a \equiv 0(\bmod p)$
$a^{p}=0(\bmod p)$
$\Rightarrow a^{p}=a(\bmod p)$
so $a^{p}=a(\bmod p)$ in both cases
(b) $341=11 \times 31$
we know by Fermat's little theorem
$2^{10} \equiv 1(\bmod 11) \quad$ MI
$\Rightarrow 2^{341} \equiv\left(2^{10}\right)^{34} \times 2 \equiv 1^{34} \times 2 \equiv 2(\bmod 11) \quad$ AI
also $2^{30} \equiv 1(\bmod 31) \quad$ MI
$\Rightarrow 2^{341} \equiv\left(2^{30}\right)^{11} \times 2^{11} \quad$ A1
$\equiv 1^{11} \times 2048 \equiv 2(\bmod 31) \quad$ Al
since 31 and 11 are coprime R1
$2^{341} \equiv 2(\bmod 341)$
AG
(c) (i) converse: if $a^{p}=a(\bmod p)$ then p is a prime
(ii) from part (b) we know $2^{341} \equiv 2(\bmod 341)$
however, 341 is composite
hence 341 is a counter-example and the converse is not true

